EXAM II, MTH 320, Fall 2016

Ayman Badawi

QUESTION 1. Let D be a group with 55 elements.
(i) (6 points). Convince me that D is not simple.

Solution: We know that D has an element of order 11, and hence D has a subgroup, say \mathbf{H}, with 11 elements. Since $[\mathrm{D}: \mathbf{H}]=5$ and 5 is the smallest prime factor of 55 , we know that H must be normal. Thus D is not simple.
(ii) (8 points). Assume that D has a normal subgroup, say H, such that $|H|=5$. Prove that D is cyclic.

Solution: Let K be a normal subgroup of D with 5 elements and let H as in (i). We know $H K$ is a subgroup of D. Thus $|H K|=5$ or 11 or 55 . Since K and H are subgroups of $H K$, we conclude that $|H K|=55$. Thus $H K=D$. It is clear that $H \cap K=\{e\}$. Hence by one of the results in class, we have $D /(H \cap K) \simeq D / H \times D / K$ and thus $D \simeq D / H \times D / K$. Since $|D / H|=5$ and $|D / K|=11$, we conclude that $D / H \simeq Z_{5}$ and $D / K \simeq Z_{11}$. Thus $D \simeq Z_{5} \times Z_{11} \simeq Z_{55}$ is cyclic.
QUESTION 2. (8 points). Given that H is a normal subgroup of a group $(D, *)$ such that $|H|=11$. Assume that $D / H=<a * H>$ (i.e., D / H is cyclic and generated by $a * H$) for some $a \in D \backslash H$ such that $a * h=h * a$ for every $h \in H$. Prove that D is abelian

Solution: I wrote this question to see how many of you read the proof I give in CLASS. Similar proof to if $D / C(D)$ is cyclic, then D is abelian. Here we go: Let $x, y \in D$. Show $x * y=y * x$. Hence $x=a^{i} * H, y=a^{k} * H$ in D / H. Thus $x=a^{i} * b, y=a^{k} * c$ for some $b, c \in H$. Now since $|H|=11, H$ is cyclic and hence abelian. Thus $b * c=c * b$. Also by hypothesis, we have $a * b=b * a$ and $a * c=c * a$. Hence $x * y=a^{i+k} * b * c=a^{i+k} * c * b=y * x$.
QUESTION 3. (6 points). Let $F: Z_{15} \rightarrow Z_{12}$ be a nontrivial group homomorphism. Find $\operatorname{Ker}(F)$ and $\operatorname{Image}(F)$.
Solution: We know $Z_{15} / \operatorname{Ker}(F) \simeq \operatorname{Image}(F)$. Hence by staring (and keep in mind that Image (F) is a subgroup of Z_{12} and $|\operatorname{image}(F)|$ must be a factor of the two numbers 12 and 15), we conclude that $\left|Z_{15} / \operatorname{Ker}(F)\right|=$ $|\operatorname{Image}(F)|=3$. Thus $\operatorname{Image}(F)=\{0,4,8\}$, and in order that $\left|Z_{15} / \operatorname{Ker}(F)\right|=3$ we must have $|\operatorname{Ker}(F)|=5$. Thus $\operatorname{Ker}(F)=\{0,3,6,9,12\}$.
QUESTION 4. (6 points). Let $F: Z \rightarrow Z_{20}$ be a nontrivial group homomorphism. Given that F is not ONTO (not surjective) and $5 \in \operatorname{Image}(F)$. Find $\operatorname{Ker}(F)$ and $\operatorname{Image}(F)$.

Solution: Since F is not onto and $5 \in \operatorname{Image}(F),<5>=\{0,5,10,15\}$ is the only subgroup of Z_{20} that is not equal to Z_{20} and contains 5. Thus Image $(F)=\{0,5,10,15\}$. We know every subgroup of Z is of the form $k Z$. Hence $Z / \operatorname{Ker}(F)=Z / k Z \simeq \operatorname{Image}(F)=\{0,5,10,15\} \simeq Z_{4}$. Thus $K=4$. Hence $\operatorname{Ker}(F)=4 Z$.
QUESTION 5. (6 points). Let D be an abelian group with p^{3} elements for some prime integer p. Assume that D has a unique subgroup of order p. Prove that D is cyclic.

Solution: We Know that (1) $D \simeq Z_{p^{3}}$ or (2) $D \simeq Z_{p} \times Z_{p^{2}}$ or (3) $D \simeq Z_{p} \times Z_{p} \times Z_{p}$. If D is isomorphic to the groups in (2) or (3), then clearly D has more than one subgroup with p elements. Thus $D \simeq Z_{p^{3}}$ is cyclic.
QUESTION 6. (6 points). Let D be a a noncyclic abelian group with 32 elements. Assume that $|a|=16$ for some $a \in D$. Up to isomorphism, find all such groups.

Solution: We know (1) $D \simeq Z_{32}$ or (2) $D \simeq Z_{2} \times Z_{16}$ or (3) $D \simeq Z_{k_{1}} \times \cdots Z_{k_{m}}$ where $k_{1}, \ldots, k_{m} \in\{2,4,8\}$. Now D is not isomorphic to Z_{32} since D is not cyclic. D is not isomorphic to a group as in (3) since all such groups have elements of order 8 or less. Thus $D \simeq Z_{2} \times Z_{16}$.
QUESTION 7. (6 points). Assume that a group D has unique subgroup H where $|H|=2016$. Prove that H is a normal subgroup of D.

Solution: Let $a \in D$. Show $a * H=H * a$. Since $C_{a}(H)=a * H * a^{-1}$ is a subgroup od D with cardinality equals to the cardinality of H, we conclude $a * H * a^{-1}=H$. Thus $a * H=H * a$.
QUESTION 8. (i) ($\mathbf{5}$ points). Is $U(27) \simeq Z_{18}$? explain
(ii) (5 points). Is (1 24$) o(13) \in A_{4}$? explain
(iii) (5 points). Is every abelian group with 45 elements isomorphic to $Z_{15} \times Z_{3}$? explain
(iv) (5 points). Let $a=(1345) o(241)$. Find $|a|$
(v) (5 points). Let $a \in S_{7}$ and $m=|a|$. What is the maximum value of m. Explain briefly.

Solution: (i-iv): all of you got it right. For (v): just observe that a must be written as disjoint cycles say $a=a_{1} o a_{2} o \cdots o a_{k}$ and $|a|=\mathbf{L C M}\left[\right.$ length of a_{1}, length of a_{2}, \ldots, length $\left.a_{k}\right]=m=$ maximum. Now it should be clear that for m to be maximum $k=2,\left|a_{1}\right|=4$ and $\left|a_{2}\right|=3$. Hence $m=12$.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

