MTH 320 Abstract Algebra Fall 2016, 1–1

-. ID –

EXAM II, MTH 320, Fall 2016

Ayman Badawi

QUESTION 1. Let *D* be a group with 55 elements.

(i) (6 points). Convince me that D is not simple.

Solution: We know that D has an element of order 11, and hence D has a subgroup, say H, with 11 elements. Since [D : H] = 5 and 5 is the smallest prime factor of 55, we know that H must be normal. Thus D is not simple.

(ii) (8 points). Assume that D has a normal subgroup, say H, such that |H| = 5. Prove that D is cyclic.

Solution: Let K be a normal subgroup of D with 5 elements and let H as in (i). We know HK is a subgroup of D. Thus |HK| = 5 or 11 or 55. Since K and H are subgroups of HK, we conclude that |HK| = 55. Thus HK = D. It is clear that $H \cap K = \{e\}$. Hence by one of the results in class, we have $D/(H \cap K) \simeq D/H \times D/K$ and thus $D \simeq D/H \times D/K$. Since |D/H| = 5 and |D/K| = 11, we conclude that $D/H \simeq Z_5$ and $D/K \simeq Z_{11}$. Thus $D \simeq Z_5 \times Z_{11} \simeq Z_{55}$ is cyclic.

QUESTION 2. (8 points). Given that *H* is a normal subgroup of a group (D, *) such that |H| = 11. Assume that $D/H = \langle a * H \rangle$ (i.e., D/H is cyclic and generated by a * H) for some $a \in D \setminus H$ such that a * h = h * a for every $h \in H$. Prove that *D* is abelian

Solution: I wrote this question to see how many of you read the proof I give in CLASS. Similar proof to if D/C(D) is cyclic, then D is abelian. Here we go: Let $x, y \in D$. Show x * y = y * x. Hence $x = a^i * H, y = a^k * H$ in D/H. Thus $x = a^i * b, y = a^k * c$ for some $b, c \in H$. Now since |H| = 11, H is cyclic and hence abelian. Thus b * c = c * b. Also by hypothesis, we have a * b = b * a and a * c = c * a. Hence $x * y = a^{i+k} * b * c = a^{i+k} * c * b = y * x$.

QUESTION 3. (6 points). Let $F : Z_{15} \to Z_{12}$ be a nontrivial group homomorphism. Find Ker(F) and Image(F).

Solution: We know $Z_{15}/Ker(F) \simeq Image(F)$. Hence by staring (and keep in mind that Image(F) is a subgroup of Z_{12} and |image(F)| must be a factor of the two numbers 12 and 15), we conclude that $|Z_{15}/Ker(F)| = |Image(F)| = 3$. Thus $Image(F) = \{0, 4, 8\}$, and in order that $|Z_{15}/Ker(F)| = 3$ we must have |Ker(F)| = 5. Thus $Ker(F) = \{0, 3, 6, 9, 12\}$.

QUESTION 4. (6 points). Let $F : Z \to Z_{20}$ be a nontrivial group homomorphism. Given that F is not ONTO (not surjective) and $5 \in Image(F)$. Find Ker(F) and Image(F).

Solution: Since F is not onto and $5 \in Image(F)$, $< 5 >= \{0, 5, 10, 15\}$ is the only subgroup of Z_{20} that is not equal to Z_{20} and contains 5. Thus $Image(F) = \{0, 5, 10, 15\}$. We know every subgroup of Z is of the form kZ. Hence $Z/Ker(F) = Z/kZ \simeq Image(F) = \{0, 5, 10, 15\} \simeq Z_4$. Thus K = 4. Hence Ker(F) = 4Z.

QUESTION 5. (6 points). Let D be an abelian group with p^3 elements for some prime integer p. Assume that D has a unique subgroup of order p. Prove that D is cyclic.

Solution: We Know that (1) $D \simeq Z_{p^3}$ or (2) $D \simeq Z_p \times Z_{p^2}$ or (3) $D \simeq Z_p \times Z_p \times Z_p$. If D is isomorphic to the groups in (2) or (3), then clearly D has more than one subgroup with p elements. Thus $D \simeq Z_{p^3}$ is cyclic.

QUESTION 6. (6 points). Let *D* be a noncyclic abelian group with 32 elements. Assume that |a| = 16 for some $a \in D$. Up to isomorphism, find all such groups.

Solution: We know (1) $D \simeq Z_{32}$ or (2) $D \simeq Z_2 \times Z_{16}$ or (3) $D \simeq Z_{k_1} \times \cdots \times Z_{k_m}$ where $k_1, \dots, k_m \in \{2, 4, 8\}$. Now D is not isomorphic to Z_{32} since D is not cyclic. D is not isomorphic to a group as in (3) since all such groups have elements of order 8 or less. Thus $D \simeq Z_2 \times Z_{16}$.

QUESTION 7. (6 points). Assume that a group *D* has unique subgroup *H* where |H| = 2016. Prove that *H* is a normal subgroup of *D*.

Solution: Let $a \in D$. Show a * H = H * a. Since $C_a(H) = a * H * a^{-1}$ is a subgroup od D with cardinality equals to the cardinality of H, we conclude $a * H * a^{-1} = H$. Thus a * H = H * a.

QUESTION 8. (i) (5 points). Is $U(27) \simeq Z_{18}$? explain

- (ii) (5 points). Is $(1 \ 2 \ 4)o(1 \ 3) \in A_4$? explain
- (iii) (5 points). Is every abelian group with 45 elements isomorphic to $Z_{15} \times Z_3$? explain
- (iv) (5 points). Let $a = (1 \ 3 \ 4 \ 5)o(2 \ 4 \ 1)$. Find |a|
- (v) (5 points). Let $a \in S_7$ and m = |a|. What is the maximum value of m. Explain briefly.

Solution: (i-iv): all of you got it right. For (v): just observe that a must be written as disjoint cycles say $a = a_1 \circ a_2 \circ \cdots \circ a_k$ and $|a| = \text{LCM}[\text{length of } a_1, \text{length of } a_2, \dots, \text{length } a_k] = m = \text{maximum}$. Now it should be clear that for m to be maximum k = 2, $|a_1| = 4$ and $|a_2| = 3$. Hence m = 12.

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com